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Abstract 

Numerous plant taxa are threatened by habitat destruction or overexploitation. To 
overcome these threats, new methods are urgently needed for rescuing threatened 
and endangered plant species. Here, we review the genetic consequences of threats 
to species populations. We highlight potential advantages of genome editing for miti-
gating negative effects caused by new pathogens and pests or climate change 
where other approaches have failed. We propose solutions to protect threatened 
plants using genome editing technology unless absolutely necessary. We further dis-
cuss the challenges associated with genome editing in plant conservation to mitigate 
the decline of plant diversity.
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Background
Plants play central roles in ecosystem dynamics as they provide essential resources 
for both consumers and decomposers. However, recent studies have confirmed that 
the sixth extinction event began approximately 100,000 years ago, coinciding with the 
migration of modern humans to different parts of the world, and is still ongoing [1]. 
There are unprecedented rates of population decline of many plant species, primarily 
due to habitat destruction or overexploitation [2]. For example, analyses of seed plant 
datasets indicate that annual losses of species have been about 500 times higher than 
the background extinction rate recently [3–5]. Thus, there is an urgent need to conserve 
or restore many species [6], and for this genetic information about their populations is 
essential.

Accordingly, in the past three decades, substantial progress has been made in plant 
conservation genetics and genomics by estimating (putatively) neutral genetic varia-
tion (hereafter NGV) in threatened or endangered species using neutral genetic mark-
ers (e.g., allozymes, microsatellites [SSRs], or single nucleotide polymorphisms [SNPs]) 
[7–12]. This can provide valuable indications of species’ demographic history, as well 
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as genetic diversity, and hence appropriate conservation strategies. For example, species 
may have moderate or high levels of variation, despite small population sizes, because 
of sharp recent declines [13, 14]. This is believed to apply to many taxa included in Chi-
na’s Plant Species with Extremely Small Populations program [15]. Most species in the 
program have very small populations, but in many cases, they have only become small 
recently and still retain high genetic variation [16]. However, some endangered plant 
species with small population sizes have extremely low variation, usually attributed to 
random genetic drift and/or inbreeding or historical events, such as demographic fluc-
tuations due to climate oscillations during the Quaternary [17–21].

The species with low abundance and low genetic variation are of greatest concern 
because to survive and reproduce plants must cope with environmental changes through 
adaptive genetic variation (hereafter AGV) [22]. Therefore, maintaining sufficient 
genetic diversity is essential for species to adapt to changing environments [23–25]. 
There is also increasing interest in directional and non-directional responses and their 
effects on species’ adaptive potential [26], which have been explored in traditional com-
mon garden and reciprocal transplant experiments [27, 28]. In addition, genomic infor-
mation has been used in combination with spatial models recently to analyze probable 
genetic changes that may result from ecological or local adaptation [29–31]. In particu-
lar, interactions between the AGV of species and landscape characteristics have been 
studied at the genome level to quantify responses to environmental change (i.e., land-
scape genomics). Recently, genetic offset [32], risks of non-adaptedness (RONA) [33], 
and genomic vulnerability [34] have also been evaluated to predict climate-driven shifts 
of genetic compositions within populations [35, 36] and thus, using assisted gene flow 
and assisted migration, to maximize the local adaptation of focal populations under cli-
mate change [37]. Another approach that is being increasingly used in efforts to enhance 
plants’ adaptation, e.g., to climate change, is “conservation epigenetics,” i.e., the use of 
epigenetic information on DNA methylation patterns to recommend conservation- or 
translocation-based “population reinforcement strategies” for target plants [38, 39]. Fur-
thermore, gene expression study (transcriptome analysis) is precious for finding genes 
and gene networks involved in plants’ local adaptation [29]. Clearly, it is important to 
understand both NGV- and AGV-based approaches that can be applied in plant con-
servation or restoration efforts (see the below details in the “Outline of applications of 
NGV and AGV in plant conservation or restoration” section). This is because knowl-
edge of NGV is essential for understanding many relevant demographic, ecological, and 
evolutionary processes. Similarly, knowledge of AGV is essential for evaluating plants’ 
adaptive potential in local environments with changing conditions, e.g., due to global 
warming, and identifying appropriate conservation units or formulating other appropri-
ate strategies.

Unlike these approaches that can be applied for monitoring and managing exist-
ing genomes of species, new genome-based technology that can manipulate genomes 
is urgently needed to mitigate the negative effects. A decade ago, clustered regularly 
interspaced short palindromic repeats (CRISPR)-Cas9-mediated site-specific genome 
engineering was successfully demonstrated in human cells [40–43]. Since then, the 
approach has blossomed and become the dominant technology for editing genomes of 
other eukaryotes, including plants [44–46] (see the below details in the “Genome editing 
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tools for plant conservation” section). Recently developed genome editing (hereafter 
GE, including gene [genome] edited) technology has been widely used to improve traits 
and investigate gene functions of crops and model plants, mainly because of its ease of 
design, low cost, and ability to provide transgene-free edits [47–49]. For example, GE 
has several advantages over conventional mutagenesis methods, like chemical mutagens 
(e.g., ethyl methanesulfonate [EMS]) or physical irradiation (e.g., fast neutrons), which 
are more random and less targeted [50]. Multiplex genome editing offers the advantage 
of manipulating more sites simultaneously, which significantly reduces the time required 
to generate variants with multiple advantageous mutations. However, the application 
of GE in plant conservation is still in its infancy despite its ability to generate suitable 
novel genotypes for challenging conditions [51, 52]. Therefore, GE has a high potential 
for future applications in conservation and restoration. In this review, we discuss the 
selection of species, populations, and individuals for GE, the technological basis of GE, 
propose potential ways to protect threatened plants using GE, discuss the challenges 
(e.g., technical difficulties, negative impacts on the ecosystem, and regulatory aspects) 
associated with GE in plant conservation, and provide the strategies for reinforcement of 
declining wild populations.

Outline of applications of NGV and AGV in plant conservation or restoration

About 17 applications of population genetics information based on neutral markers 
(i.e., NGV) are known. These are to (i) estimate NGV within and among populations, 
(ii) identify conservation units (e.g., management units), (iii) estimate current effec-
tive population size, (iv) infer random genetic drift, (v) estimate levels of gene flow, (vi) 
infer colonization histories of native species and histories of plant invaders, (vii) iden-
tify probable glacial refugia, (viii) infer mating systems and parentage, (ix) address issues 
related to wildlife forensics, (x) estimate levels of inbreeding, (xi) use environmental 
DNA approaches, (xii) infer human-mediated disturbance, (xiii) identify quantitative 
trait loci (QTL), (xiv) estimate SNP-based heritability, (xvi) infer historical patterns of 
dispersal, (xvii) monitor levels of NGV of artificially propagated endangered species, and 
(xviii) identify clonal and fine-scale genetic structure.

Similarly, genetic information on AGV has been applied for conservation purposes. 
These are to (i) estimate AGV within and among populations, (ii) identify conserva-
tion units (e.g., adaptive units), (iii) decipher the genetic basis of adaptation to climate 
change, (iv) predict species range losses under climate change, (v) identify QTL, (vi) 
identify loci strongly correlated to particular environmental variables, (vii) prevent over-
estimation of future biodiversity losses, (viii) develop reliable predictions about adaptive 
potential, (ix) understand genetic mechanisms of inbreeding and outbreeding depres-
sion, (x) investigate gene flow associated with adaptive responses, (xi) investigate the 
balance of gene flow and selection under climate change, (xii) estimate SNP-based her-
itability, (xiii) compare QST and FST, and (xiv) provide crucial information for assisted 
migration in trees under climate change. All presented information was modified from 
Fig. 1 in a previous publication [11].
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Genome editing tools for plant conservation

To date, four types of genetic engineering of plants have been developed: (i) targeted 
mutagenesis by non-homologous end joining (NHEJ) [47], (ii) precise editing by homol-
ogy-directed repair (HDR) [54], (iii) base editing (BE) [55], and (iv) prime editing (PE) 
[56]. These new technologies have the potential to enable rapid and precise manipula-
tion of genes associated with desired traits, and thus greatly assist urgent conservation 
efforts [12].

Currently, at least six Cas proteins are available for targeted mutagenesis. Cas9 is 
the most popular CRISPR system adapted for GE in plants. It is quite simple and effi-
cient, requiring Cas9 and a single guide RNA to assemble and then cleave genomic sites 
after recognition of a targeted DNA sequence followed by a protospacer adjacent motif 
(PAM). To expand target ranges, Cas9 proteins have been engineered through directed 
evolution or rational design to obtain variants that recognize different PAMs [57, 58]. In 
addition, Cas9 orthologs from other bacterial and archaeal organisms have been mined 
to obtain new tools that recognize different PAMs, such as SaCas9 [59] and FnCas9 [60]. 
In contrast to Cas9, Cas12a and Cas12b are type V endonucleases that recognize T-rich 
PAMs and a short CRISPR RNA, which is advantageous for synthesizing and multiplex 

Fig. 1 Genome sequencing status of threatened plants. A Map of threatened plants with sequenced 
genomes (red, orange, and yellow dots represent “critically endangered,” “endangered,” and “vulnerable” plants, 
respectively), and global regulatory status of genome-edited (GE) plants in indicated areas (adapted from 
[53]). SDN, site-directed nuclease; GMO, genetically modified organism. B Genome sequencing status of 
threatened plants. Total numbers of species (in blue) and numbers with sequenced genomes (in red) in three 
groups of threatened plants. C Increase in numbers of sequenced genomes of threatened plants with time 
between 2014 and 2022
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editing [61, 62]. Moreover, they generate a double-strand break (DSB) with staggered 
ends distal to the PAM site. CasX requires a guide RNA and trans-activating CRISPR, 
generating a staggered end with a 10 nt overhang [63]. The Cas proteins mentioned 
above are assigned to class 2, but members of another class 1 form multimeric com-
plexes that can generate large deletions of up to 100 kb, with a guide RNA [64]. As more 
Cas proteins are being characterized, the CRISPR toolbox is expanding, and theoreti-
cally every site in the genomes of threatened plant species can be targeted.

While NHEJ can efficiently generate mutations in target regions (mostly + 1/ − 1 muta-
tions at the − 3 position upstream of a PAM site), not as precisely as HDR. However, the 
application of HDR is extremely difficult in higher plants, although DSBs generated by 
sequence-specific nucleases promote its efficiency [65]. There has been an intense effort 
to enhance this technology through improvements in donor design, donor availability, 
and manipulation of DNA repair pathways. Increasing donor availability is a feasible way 
to improve HDR in plants. For example, the geminivirus replicon has been harnessed 
to amplify DNA donors in cells to increase HDR efficiency in Arabidopsis, tomato, and 
tobacco [66–68]. Moreover, physical methods involving particle bombardment to deliver 
dsDNA or ssDNA donors to increase donor amounts have been demonstrated in rice 
[69, 70].

As some deleterious variants in threatened plant species are point mutations, tools 
that can edit a single nucleotide are needed [71]. BE is a recently developed breakthrough 
technology that can introduce point mutations precisely at target sites without the need 
for DSB and donor DNA [72]. Currently, there are three types of BE tools: cytosine base 
editors (CBEs), adenine base editors (ABEs), and glycosylase base editors (GBEs). These 
tools all have similar architecture, including Cas9 nickase and deaminase. The cytidine 
deaminase of a CBE deaminates cytosine in an exposed non-target DNA strand and gen-
erates a U:G mismatch, which is then converted to U:A and finally becomes T:A after 
replication (resulting in C:G to T:A conversion). This process is promoted by uracil 
glycosylase inhibition by an inhibitor (UGI) fused to nCas9. Interestingly, GBEs were 
developed by replacing the UGI with uracil-DNA glycosylase in some CBEs and ena-
bling base transversions (C to A or C to G) [73, 74]. In contrast, ABEs use adenosine 
deaminase to deaminate adenine (A) into inosine (I) in the non-target strand, without 
the need to inhibit base excision repair activity, and finally generate A-to-G base conver-
sion [75]. These BEs cannot generate all possible base substitutions, so new BE tools or 
other technologies are required. PE was developed shortly after BE and can generate a 
much wider range of mutations of any type, including not only point mutations but also 
indels, and even complex combinations of mutations [76]. The PE system is composed 
of three main components: nCas9 (H840A), M‐MLV reverse transcriptase (RT) domain, 
and pegRNA, which contains a sgRNA, a primer binding sequence (PBS), and a RT tem-
plate (containing the desired DNA sequence change). RT was fused to nCas9 to gener-
ate the prime editor, which is guided to target sequences by the sgRNA. Once nCas9 
nicks the PAM-containing non-target strand, PBS will hybridize with the resulting 3′ 
end which serves as a DNA primer for reverse transcription by the RT domain. Then, 
the RT domain guides the polymerization of edited DNA from the pegRNA to the target 
site, resulting in either a 3′ flap with an edit or a 5′ flap without an edit. Flap excision 
and ligation finally generate heteroduplex DNA with one edited strand and one unedited 
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strand. Through DNA repair or replication that can copy the edit to the complementary 
strand, the desired edit was permanently installed. This makes PE suitable for all point 
mutations, insertions, and deletions.

Determining species, population(s), and individuals to use for genome editing
Under what circumstances is GE applied among endangered plants (included in the 
IUCN Red List [77]) in comparison with traditional population genetics/genomics and 
what is the most scientific and efficient way to select target species? When selecting tar-
get species, is their demographic, ecological, and biological information well known? 
Before any GE can commence, there must be a clear justification for the need to apply 
GE to the target species (e.g., the main purpose of GE and conservation challenges or 
implications; Table 1). At the same time, researchers should sufficiently justify reasons 
for species selection by considering the two issues: (i) technical bottlenecks that may 
arise in introducing GE approaches to the focal species and (ii) the negative effects of 
GE, which introduce in the “Challenges facing plant conservation using genome edit-
ing” section later in this review. By doing so, researchers are likely to be able to define 
conservation problems more clearly and explore potential solutions more deeply. Cur-
rently, most GE research is mainly led by plant biotechnologists, so when selecting a 
focal species, it would be beneficial to discuss with researchers who major in systemat-
ics/taxonomy, population/community ecology, conservation genetics, population genet-
ics (genomics), and bioinformatics. Consultation with managers and practitioners may 
also be necessary.

Similar to species selection, it may be essential to identify suitable donor population(s) 
and then individuals. Assuming that NGV can be used, at least partially, as a proxy for 
AGV [89], but see [90], prior information on target species’ genetic diversity and struc-
ture could be used to select genetically distinct but diverse populations [11]. Next, the 
most genetically diverse individuals within the target (source) population could be 
selected [91]. If researchers are interested in the adaptive potential of traits of a target 
species, they should first select functional SNPs and genome-wide coding region SNPs. 
Then, to select source populations and individuals, researchers could measure the AGV 
of the target species [92]. However, researchers should be aware that if the GE individu-
als to be translocated or reintroduced are too genetically similar to the recipient popula-
tion, inbreeding will not be mitigated and there will be no increase in fitness [93, 94]. On 
the other hand, outbreeding depression is likely if the GE individuals are too genetically 
different from the donor population [95, 96]. In addition, individuals with a high genetic 
load are not suitable translocation sources [97], so they may not be appropriate source 
individuals for GE (or genetic rescue).

The basis for genome editing: genome resources and hurdles 
to the implementation of CRISPR tools
As GE involves highly precise changes of genome sequences, high-quality genomes are 
essential prerequisites. Increasing numbers of plant species have been sequenced since 
the first genome assembly of the model plant Arabidopsis thaliana [98]. According to a 
recent study, genome assemblies have been constructed for nearly 800 terrestrial plant 
species [99]. However, very few genome assemblies are available for threatened plants. 
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The first genomic assembly for a threatened plant (the epiphytic orchid Dendrobium 
officinale) was published in 2015 [100] (Additional file  1: Table  S1), 15  years after the 
A. thaliana assembly. We found that the list of genome assemblies for terrestrial plant 
species constructed over the last 20  years includes assemblies for just 10 vulnerable, 
four endangered, and 11 critically endangered plant species (Fig. 1A; Additional file 1: 
Table S1), accounting for just 0.11, 0.04, and 0.22% of the total numbers of the species 
included in the IUCN Red List [77], respectively (Fig.  1B). Interestingly, the distribu-
tion of these sequenced threatened species largely overlaps with 25 biodiversity hotspots 
around the world (Fig. 1A) [101].

The precision of GE depends on the quality of genome assemblies. Recent genome 
sequence development by long-read sequencing platforms, such as those provided by 
Pacific Biosciences and Oxford Nanopore Technologies, together with improvements 
in assembly methodology, can generate gap-free reference genomes [102]. This is criti-
cal for conservation genomics because gap-free genomes will greatly facilitate the pre-
cise manipulation of target genes by editing genomes of threatened plants. Long-read 
sequencing technology has become the method of choice for generating genome 
assemblies in many threatened plant species, accounting for approximately half of the 
published genome assemblies of threatened plant species (Fig.  1C; Additional file  1: 
Table S1). In addition, a steady decline in sequencing costs is enabling the resequenc-
ing of individuals of threatened plants and can be used (for example) to identify large 
numbers of SNPs, even with limited numbers of individuals. More importantly, it can 
identify candidate genes and sites that are potentially responsible for reductions in the 
fitness of threatened plants [103].

Besides the reference genome resources and gene annotation information, there are 
still bottlenecks for genome editing [104]. This is about whether it is possible to create 
a transformant of a specific threatened species. It is theoretically possible but key con-
siderations include finding optimal experimental conditions for transformation, secur-
ing genome information, addressing off-target effects, and managing regeneration rates 
especially slow-growing species like many woody plants [105]. To gain insights into miti-
gating concerns about these challenges, we collate data on which threatened species the 
current GE technology can be implemented in, and which it cannot (Additional file 1: 
Table S1). Encouragingly, 23 of the 64 whole genome sequenced threatened species have 
tried some effort of GE, either regeneration, transformation, or editing target genes 
(Additional file 1: Table S1). Seven of the whole genome sequenced threatened species 
have successfully implemented GE by Agrobacterium or biolistic-mediated delivery 
of editing tools with varied efficiency (Table 1). Hence, we believe that GE techniques 
have opened new avenues for plant conservation and can facilitate plant adaptation and 
conservation.

Mitigation of negative effects of new pathogens and pests or climate change 
by genome editing
As is well known, GE allows new approaches for breeding disease resistance in a vari-
ety of crops [106, 107]. Here, we focus on disease or pathogen resistance in wild plants. 
A famous application of biotechnology in plant conservation is the attempt to restore 
the American chestnut Castanea dentata, which is severely threatened by the chestnut 
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blight fungus Cryphonectria parasitica, by introducing a wheat antifungal gene into its 
genome. This approach has significantly enhanced its resistance [108]. However, despite 
its great promise, this transgenic American chestnut is still under evaluation by regula-
tory agencies before its public release [109]. Newly developed GE technology, such as 
the delivery of editing tools via mRNA or ribonucleoproteins, has the potential to tackle 
stumbling blocks by generating transgene-free edits [47, 72, 73, 105, 110]. Producing 
GE plants with this approach could be a solution to concerns associated with the use of 
genetically modified organisms (GMOs) and could help address important issues such as 
food security, sustainability, and conservation (Table 1).

In addition, modern climate change is affecting the distribution of plant species 
globally and increasing local extinction rates [111, 112]. Although climate change 
may not have driven any species extinct yet, predictions of high extinction rates in 
the future all involve it, mainly through increases in temperature and rising  CO2 lev-
els and both the intensity and frequency of drought [113, 114]. To the best of our 
knowledge, however, there are no reported uses of GE to reduce threatened plants’ 
sensitivity to climate change, but some successful case studies in endangered animal 
species might provide a framework for it [115–117]. Thus, GE appears to have a high 
potential for future application in the conservation and restoration of threatened 
plants [118].

Small populations are most susceptible to random genetic drift, which raises their 
risk for extinction through increasing inbreeding, decreasing within-population genetic 
variation, and increasing among-population genetic differentiation [17, 119]. Increasing 
probabilities of inbreeding in small populations also raise risks for inbreeding depres-
sion, i.e., recessive deleterious genetic variants becoming homozygous and associated 
potential reductions in fitness [120]. Small populations are highly vulnerable to the 
increasing anthropogenic spread of pests and diseases around the world, and new GE 
technology could be applied to mitigate the negative effects, as described in more detail 
in the next two sections.

Identifying deleterious mutations for conservation using genome editing
Genetic problems are common in ex situ collections, which raises major complica-
tions for restoring species that are extinct in the wild. Therefore, to conserve threat-
ened plant species, it is essential to identify and change deleterious variants. How are 
deleterious mutations discovered in threatened and endangered plants? Numerous 
tools are available for identifying deleterious variants, such as PolyPhen-2 (PP2) [121], 
LRT [122], PROVEAN [123], GERP +  + [124], and SIFT [125] software packages. The 
purpose, input data type, and performance of these tools have been well documented 
and compared in two studies [126, 127]. PROVEAN- and SIFT-based analyses have 
also shown that endangered island endemic species have significantly more deleteri-
ous amino acid variants than non-endangered species at heterozygous sites, explaining 
why they have lower fitness owing to “vulnerable genomes” [128]. In addition, a whole 
genome resequencing approach with SIFT was recently applied in an investigation of 
factors responsible for extremely small populations of the newly described maple spe-
cies Acer yangbiense, endemic to Yunnan, China [129]. Numerous deleterious mutations 
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were identified and the study showed that populations with a high frequency of runs of 
homozygosity had more homozygous deleterious variants.

Identification and characterization of the sites of such deleterious variants could be 
highly valuable for assisting the adaptation of threatened species by selecting appro-
priate GE tools for their precise modification (for details see the “Genome editing 
tools for plant conservation” section). The edited individuals by correcting deleterious 
mutations with an adaptive state could potentially spread the adaptive alleles within 
and between populations by gene flow. The adaptive effects of the resulting GE could 
then be experimentally evaluated and applied, if successful, in conservation manage-
ment and restoration (Fig. 2A).

Fig. 2 Potential applications of genome editing (GE) in plant conservation. A Deleterious mutations can 
be identified by several software packages at the population level, then modified by GE tools, B GE can be 
used to modify flower pigmentation to increase pollinator visitation, which may lead to increases in gene 
flow and thus genetic diversity, C genomes of susceptible plants can be engineered to enhance their disease 
resistance either by host induced gene silencing (HIGS) or modifying susceptibility (S) genes, and D GE can be 
used to engineer plant-associated microbes or microbiomes. The engineered microbes or microbiomes can 
then colonize either above- or below-ground parts of plants, which may promote resistance, tolerance, and/
or growth
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Maintaining genetic variation by attracting pollinators through genome 
editing
Gene movement between plant populations is important for maintaining genetic vari-
ation and mitigating the negative effects of random genetic drift and inbreeding, which 
are particularly detrimental for threatened species with fragmented populations [130]. 
More than 67% of the pollination of flowering plants is mediated by insects, birds, and 
mammals [131]. Therefore, attracting pollinators is essential for sufficient gene flow 
among populations of many flowering plants and mitigating the negative effects of ran-
dom genetic drift and inbreeding depression, especially for threatened species with lim-
ited distributions and small populations.

Flowering plants have evolved diverse pollinator-attracting strategies that involve flo-
ral pigmentation [132], and increasing evidence has recently revealed their molecular 
mechanisms. For example, the HaMYB111 gene in sunflowers is responsible for diverse 
“bullseye” patterns, with a UV-reflecting ring surrounded by a UV-absorbing ring [133]. 
A homolog of HaMYB111 in Arabidopsis belongs to a small transcription factor family 
called PRODUCTION OF FLAVONOL GLYCOSIDES (PFG1/MYB12, PFG2/MYB11, 
and PFG3/MYB111) that controls the expression of genes involved in the production of 
flavonol glycosides [134]. These glycosides are the pigments required for floral UV pat-
terns in at least several plant species (e.g., Brassica rapa and Petunia spp.) [133]. Control 
of flavonol glycosides by PFG members has also been discovered in other plant species 
[135, 136]; the PFG family is probably functionally conserved across eudicots [133, 137] 
and has great potential for modulation of pollinator services.

Accordingly, we propose two strategies to increase the population sizes and mitigate 
the negative effects of inbreeding depression and random genetic drift on threatened 
plant species by changing the expression or translation patterns of PFG genes and thus 
pollinator visitation patterns (Fig. 2B). One is to create numerous novel cis-regulatory 
alleles to tailor floral pigmentations by targeting PFG promoter regions through GE. 
This could rapidly and efficiently create a continuum of quantitative trait variation by 
mutagenizing cis-regulatory regions of several developmental genes through multi-
plexed CRISPR-Cas9 editing, as reported in experiments with tomatoes [138]. An alter-
native strategy is to manipulate amounts of PFG proteins by editing upstream open 
reading frames (uORFs), which are short protein-coding elements in the 5′ leader region 
of downstream primary ORFs (pORFs) [139]. This strategy is based on the discovery that 
uORF-mediated translational regulation is a general mechanism for controlling protein 
production [140, 141]. Targeting uORFs by GE can also generate mutants with varying 
degrees of mRNA translation of the relevant pORFs [142, 143].

Manipulating microbes indirectly or directly to rescue endangered plant 
species
Indirect manipulation

Most plant conservation practices have focused on threatened plants themselves and 
largely neglected their intimate partners, host-associated microbes [144]. There may be 
two reasons for this. One is that for a long time, we did not know the key microbes that 
affect threatened plants’ fitness. The other is that we rarely understand the mechanisms 
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whereby microbes promote or inhibit their growth, development, and reproduction. 
However, host-associated microbes in the rhizosphere, phyllosphere, and endosphere 
profoundly influence host plants’ viability (and thus fitness) by regulating their immu-
nity and development [145]. For example, myrtle rust, a disease caused by the fungus 
Austropuccinia psidii, is very invasive, affecting many plants of the large Myrtaceae fam-
ily [146], Eugenia gacognei in New Caledonia [147], and Rhodomyrtus psidioides and R. 
rubescens in Australia [148].

The ability of A. psidii to attack a very wide range of species, including some with very 
large populations, suggests that it would not be an easy target, but host susceptibility (S) 
genes have proven value as GE targets to protect crop plants from various pathogens 
[149]. Thus, targeting the S genes required for A. psidii invasion is a promising approach 
for rescuing endangered trees of the Myrtaceae family (Fig. 2C). A possible method is 
to target homologous S genes that are known to confer susceptibility to myrtle rust in 
well-studied model species. Alternatively, host-induced gene silencing (HIGS) technol-
ogy [150] could be used to control pathogens by targeting various genes in pathogen 
genomes. Currently, HIGS relies on random transgenic integration of a double-stranded 
RNA-producing cassette into a chromosome, so the engineered plants are regarded as 
GMOs, which may hinder the application of the approach in conservation practices. We 
propose a strategy involving both HIGS and GE to replace endogenous siRNA or miRNA 
loci to generate siRNAs targeting pathogens of host plants through prime editing (PE) 
technology (Fig.  2C; for details see the “Genome editing tools for plant conservation” 
section). This would generate new lines of threatened plant species without transgenes 
and thus could be rapidly applied with more potential and less regulation.

Direct manipulation

In addition to editing plant genomes to indirectly target microbes, GE technology can 
be harnessed to edit microbes directly for plant conservation (Fig. 2D). We focus here 
on orchids because they account for about a tenth of flowering plants (and thus are one 
of the largest families), but a large percentage are regarded as threatened or endangered, 
putatively at least partly due to their complex symbiotic associations with mycorrhizal 
fungi [151]. All orchid species rely on mycorrhizal fungi for germination, some requir-
ing a specific strain of fungus while others can exploit a broader range of fungi. They 
also need mycorrhizal fungi in other stages following germination, including flowering. 
However, the mycorrhization level of different mycorrhizal fungi with orchid seeds or 
seedlings varies, which may greatly hinder restoration [152]. Interestingly, orchid endo-
phytes forming mycorrhizas are easy to culture [153], so they are good starting materials 
for engineering by GE to improve their mycorrhization efficiency. An inspiring exam-
ple is provided by the gene encoding the effector protein SP7 of the arbuscular mycor-
rhizal fungus Glomus intraradices which can efficiently promote mycorrhization [154]. 
Surprisingly, it has been shown that expression of this gene in the necrotrophic fungus 
Magnaporthe oryzae can attenuate root decay symptoms, suggesting that effectors from 
mycorrhizal fungi with high mycorrhization levels could be used in those with low levels 
[154]. This could be accomplished by two GE strategies: using effectors with higher myc-
orrhization potential to replace endogenous effectors or mimicking their structure using 
a deep learning-based de novo protein design approach [155].
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There is accumulating evidence that plant-associated microbiomes play a pivotal role 
in plant adaptation [156], so engineering them might rescue endangered or threatened 
species. Recently, a new approach, dubbed in  situ genome engineering, was proposed 
for manipulating microbial communities in their native contexts, to avoid the difficulties 
(including low frequencies of culturable taxa) of recapitulating the complex communities 
found in the field or lab [157, 158]. At least three types of approaches (chemical, cellular, 
and phage-mediated) can be used to change microbial communities in situ. GE technol-
ogy has been applied in a phage-mediated approach involving the selective elimination 
of target strains in a sequence-specific manner via the delivery of a CRISPR-Cas9 sys-
tem with a bacteriophage [159] and DNA-editing All-in-one RNA-guided CRISPR-Cas 
Transposase (DART)-mediated targeted GE of microbes using natural transformation 
[160]. These approaches and derivative versions have high potential utility for manipu-
lating complex microbial communities in situ for conservation purposes (Fig. 2D).

Challenges facing plant conservation using genome editing
GE technology can provide promising solutions and strategies for plant conservation 
or restoration (Fig. 3), but there are at least four major challenges. First, as mentioned 
earlier, obtaining efficient GE transformants is the biggest challenge. The potential of 
GE is highly dependent on the regeneration efficiency of GE plants, but their genetic 
transformability is often genotype-dependent. Several developmental regulators (such 
as WUSCHEL, BABY BOOM, and GROWTH-REGULATING FACTOR) promote the 
regeneration of some crop plants’ shoots [161], but it is not known if they promote other 
species’ regeneration in a genotype-independent manner.

Second, most plant GE techniques result in the generation of transgenic plants, which 
are recognized as GMOs. Thus, their release into natural ecosystems is highly regu-
lated in some countries (Fig.  1A). Although DNA-free strategies can be used to gen-
erate mutant plants without leaving GE reagents in the plant genomes [47, 110], their 

Fig. 3 A road map from the feasibility of introducing genome editing (GE) technology to threatened plant 
species to the creation of successful GE variants
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applications are strongly limited by difficulties in protoplast regeneration and marker-
free selection of GE plants. Fortunately, a highly promising method that exploits mobile 
RNA elements for transgene-free GE in wild-type A. thaliana and Brassica rapa has 
been recently published [162]. In this method, transgenic rootstocks are initially gener-
ated, in which both Cas9 and guide RNA transcripts are fused to tRNA-like sequence 
motifs. Then, Cas9 and guide RNA move to wild-type shoots grafted onto the trans-
genic rootstocks and produce transgene-free offspring in a single generation [162]. This 
method bypasses transgene elimination and tissue culture recovery, which allows its use 
in a wide range of plants. Currently, the efficiency of inherited homozygotic deletion 
edits is ca. 0.1%, which may hinder its further application in other non-model plants but 
this should be improved in the future.

Third, the mating system (self-compatibility, self-incompatibility, autonomous selfing, 
mixed mating, predominantly outcrossing, apomictic, or exclusively clonally propaga-
tion) strongly affects the outcome of plant GE, and it has been mostly applied to inbreed-
ing plants, as homozygous mutants can be obtained by selfing of heterozygous mutants. 
However, it is extremely difficult to obtain homozygous mutants of outbreeding plants 
by crossing heterozygous mutants. Therefore, to obtain homozygous mutants of these 
plants we must increase the GE efficiency to increase the chances of getting homozygous 
mutants, which are often generated by very small percentages of editing events in the 
first generation.

Finally, we agree that GE might not provide an instantaneous solution or “panacea/
cure-all” to threatened plants but may be part of a long-term conservation strategy 
[163]. The question of whether genetically edited plants disrupt biodiversity and pre-
cipitate ecological crises is also crucial. Like other genetically modified organisms, GE 
plants for conservation may introduce unexpected risks that harm ecological systems. 
However, GE plants for conservation are different from those for agricultural uses. For 
example, GE plants for agricultural uses that are more product-focused can be planted 
in a restricted area where they have less communication with wild relatives and thus 
minimize ecological adverse effects. In contrast, once GE plants for conservation are 
released to their original habitats or other habitats, it may not be possible to control or 
recall them. Therefore, we must pay more attention to the ecological ramifications of 
GE plants for conservation. These dangers include risks to non-target organisms (NTOs) 
and biodiversity, gene flow risks, risks to the evolution of resistance in target species, 
and weediness risks [164–167]. NTOs impacted by GE plants include beneficial species, 
non-target herbivores, soil organisms, species of conservation concern, and species con-
tributing to local biodiversity [168]. Gene flow from GE plants might also lead to genetic 
assimilation in wild relatives, potentially reducing genetic diversity [169]. Although GE 
plants can introduce new genes to combat pathogens or insects, the evolution of new 
resistances remains a risk [170, 171]. The persistence or invasiveness of GE plants in nat-
ural habitats may cause irreversible effects on biodiversity.

Therefore, the decision framework must include an evaluation of the possibility and 
degree of potential disruption of the ecosystem and how to manage that disruption [51]. 
Ecological risk assessments (EcoRA) of GE plants are necessary before their release 
into nature, which requires data from laboratory tests, field trials, as well as simulation 
models. The rational approach for EcoRA could be a tiered risk assessment, including 
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hazard/exposure assessment (tier 0), single high dose and dose–response testing (tier 
1), refined hazard characterization and exposure assessment (tier 2), further refined risk 
assessment (tier 3), and additional tiers (tier 4) [172, 173]. This framework should be 
applied case-by-case because the NTOs’ impact will vary depending on the specific GE 
plant, the introduced trait, and the environmental conditions where the plant is released. 
Furthermore, we recommend using an ecologically based method for selecting ecologi-
cal indicators for EcoRA of GE plants for conservation [174]. Risk assessment for the GE 
plant should be carefully determined whether the collateral damage (cost) exceeds the 
benefit. Moreover, recently ecosystem service has been strongly advocated as a key out-
come variable in risk assessment in order to connect ecological conservation and human 
well-being [175].

Suggested uses of genome‑edited plants: reinforcement of declining wild 
populations
If the risk assessment mentioned above is satisfactory, conservation practitioners may 
need to implement reinforcement of declining wild populations for focal threatened 
species. With the help of RONA, GE plants could be used to reinforce declining wild 
populations of threatened plant taxa within target species’ ranges (assisted gene flow) 
and reintroductions of GE plants at sites where they have disappeared. The establish-
ment of new GE populations beyond species’ native ranges (assisted migration) is also 
a promising approach. Simultaneously, seeds, tissues, DNA, and RNA of GE plants 
could be deposited in biobanks for further conservation purposes and research [176]. 
Furthermore, CRISPR-Cas9 gene drives (“selfish genetic elements that are transmitted 
to progeny at super-Mendelian (> 50%) frequencies” [177]) have promising potential in 
introducing deleterious edits to populations of invasive plant species for their eradica-
tion (Fig. 3). However, using gene drives to push beneficial changes through wild popula-
tions of threatened species would be very risky, thus detailed monitoring of populations 
is essential [178, 179]. It is important to recognize that no approach, including GE, may 
be suitable for all plant conservation initiatives. Sophisticated simulations should also be 
applied, if necessary, to select the most appropriate strategies for focal species, popula-
tions, and individuals (Fig. 3).

Concluding remarks and future perspectives
We are aware that not all scientists favor technologically-based solutions, including GE-
based approaches. Some believe that genomics should only play a minor role in plant 
conservation and that primarily we need to reverse the trend of natural destruction with 
ecologically driven, typically low-tech restoration solutions [180, 181]. However, prob-
ably as in the cases of the genetically improved coral Acropora millepora [116] and the 
ongoing mammoth de-extinction project, we expect that the GE approaches described 
above will soon be successfully applied to threatened plant species. For effective conser-
vation, we recommend the collaboration of molecular biologists engaged in GE research 
with conservation geneticists, plant ecologists, and conservation practitioners/managers 
when selecting individuals from natural populations of focal plant taxa for GE. This may 
help to minimize the negative ecological effects (and maximize the positive effects) of 
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future introductions into the wild. Detailed ecological studies before and after any such 
introductions may also be highly valuable.

If, in the near future, genetically improved individuals of an endangered species are 
to be introduced into the wild, it seems appropriate to do so at sites of the source popu-
lations because (as stressed in the “Determining species, population(s), and individuals 
to use for genome editing” section) “local is usually the best” [182, 183]. As our under-
standing of the underlying biological mechanisms is in its infancy, it is not yet possible 
to predict with certainty the full range of positive or negative consequences of such GE 
for organisms at the population to ecosystem level [116]. Therefore, the (re)introduction 
of GE individuals of endangered species into the wild must be approached with extreme 
caution. We recommend that they should be initially grown in an isolated botanical 
garden, experimental station, or uninhabited island, and key traits, including their fit-
ness, should be carefully monitored. Information on how they grow in natural habitats 
should also be obtained from simulations to minimize probable side effects of GE plants; 
then they should be carefully reintroduced into ecologically similar habitats (e.g., sites of 
donor populations) if permitted by relevant authorities.

Lastly, a vital aspect of the recently agreed 2050 Goal A of the Kunming–Mon-
treal Global Biodiversity Framework is the target of “zero extinction.” To achieve this 
goal, “creating a comprehensive plant inventory, evaluating the conservation status of 
known species, digitizing herbarium specimens, and preparing tailored recovery plans 
for threatened species” are crucial [6]. Additionally, removing barriers to conservation 
caused by a lack of funding and skilled personnel is necessary, and machine learning, 
citizen science, and new technologies can alleviate this issue [6]. Therefore, to prevent 
plant extinction on top of this solid infrastructure for conservation, basic and sophis-
ticated ecological research, genetics/genomics research at the species and population 
level, bioinformatics, and GE approaches that will be developed rapidly and continu-
ously in the future are expected to have a very bright future.

What about the future of GE technology in plant conservation? We believe that a 
more sophisticated understanding (fundamental and practical) of plants’ resistance and 
responses to biotic and abiotic stresses is being developed through CRISPR technol-
ogy, and more robust information will continue to emerge. This seems likely to include 
functional-genomic information that is highly relevant to both GE and ecological con-
servation. We further believe that discussing broader issues associated with GE-like 
technology and its potential application in nature conservation is required to broaden 
the scope of conservation. These include political and socio-economic issues, raising the 
need for strongly interdisciplinary GE approaches in conservation.
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